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Abstract

We construct a family of split signature Einstein metrics in four dimensions, corresponding to par-
ticular classes of third-order ODEs considered modulo fiber preserving transformations of variables.
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1. Introduction

Our starting point is a third-order ordinary differential equation (ODE)

y'=F(x, 5, 5,y"), 1)

for a real functiony = y(x). HereF = F(x, y, p, q) is a sufficiently smooth real function
of four real variablesx, y, p = y', g = y").
Given another third-order ODE

V' =FE Y.V )
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it is often convenient to know whether there exists a suitable transformation of variables
(x, y, p, q) — (x, v, p, g) which brings(2) to (1). Several types of such transformations are

of particular importance. Here we consider fiber preserving (f.p.) transformations, which
are of the form

x=x(x),  y=yxy). ®3)

We say that two third-order ODE§]) and (2) are (locally) f.p. equivalent iff there ex-

ists a (local) f.p. transformatio(B), which brings(2) to (1). The task of finding nec-
cessary and sufficient conditions for ODEl and (2)to be (locally) f.p. equivalent,

is called a f.p. equivalence problem for third-order ODEs. In the cases of (more gen-
eral) point transformations and contact transformations, this problem was studied and
solved by Cartarjl] and Chern2] in the years 1939-1941. The interest in these stud-
ies has been recently revived due to the fact that important equivalence classes of third-
order ODEs naturally define three-dimensional conformal Lorentzian structures including
Einstein—Weyl structures. This makes these equivalence problems aplicable not only to
differential geometry but also to the theory of integrable systems and general relativity
[3,8,11]

In this paper we show how to construct four-dimensional split signature Einstein met-
rics, starting from particular ODEs of third-order. We formulate the problem of f.p. equiv-
alence in terms of differential forms. Invoking Cartan’s equivalence method, we con-
struct a six-dimensional manifold with a distinguished coframe on it, which encodes
all information about original equivalence problem. For specific types of the ODEs, the
class of Einstein metrics can be explicitly constructed from this coframe. This result is a
byproduct of the full solution of the f.p. equivalence problem, that will be described in
[5].

We acknowledge that all our calculations were checked by the independent use of the
two symbolic calculations programs: Maple and Mathematica.

2. Third-order ODE and Cartan’s method

Following Cartan and Chern, we rewritg), using 1-forms

1=dy— pdx,

2_dp—qdr

. p—qdx, @)
=dg — F(x,y, p, q) dx,

4 — dx.

These are defined on the second jet sp#tdocally parametrized byx( y, p, g). Each
solutiony = f(x) of (1) is fully described by the two conditions: forms, »?, »° vanish

on a curve { f(2), f/(¢), f”(¢)) and, as this defines a solution up to transformations of
o = dronthis curve. Suppose now, that Eb) undergoes fiber preserving transformations
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(3). Then the formg4) transform by

ol — ol = aw?,

w? — 0% = B(0? + yol),
w3 = @° = €(w® + nw? + xwh),

o > 0% =’

(5)

where functionsy, 8, y, €, n, , A are defined o3, satisfyafer # 0 and are determined
by a particular choice of transformati@). A fiber preserving equivalence class of ODEs is
described by formét) defined up to transformatioris). Eqs.(1) and (2)are f.p. equivalent,
iff their corresponding forms«’) and ) are related as above.

We now apply Cartan’s equivalence mettipd.0]. Its key idea s to enlarge the spagé
to a new manifoldP, on which functionsy, g, y, €, n, s, A are additional coordinates. The
coframe &) defined up to transformatiols), is now replaced by a set of four well-defined
1-forms

ol = oza)l,

62 = B(w? + yo'),
02 = e(w® + nw? + xwl),

0% = A
onP. If, in addition, the following f.p. invariant conditioj,6]

Feqg #0

is satisfied then, there is a geometrically distinguished way of choosing five parame-
ters B, ¢, n, », A to be functions of £, y, p, ¢, o, ¥). Then, on a six-dimensional man-
ifold P parametrized byx( y, p, ¢, o, y) Cartan’s method gives a way of supplement-
ing the well-defined four 1-formsd{() with two other 1-formss21, £22 so that the set
(61,62, 6°, 0%, 2, ©2) constitutes a rigid coframe oR. According to the theory of G-
structured7,10], all information on a f.p. equivalence class of Et) satisfyingF,, # 0

is encoded in the coframe¥ 62, 63, %, 21, £22). Two Egs(1) and (2)are f.p. equivalent,

iff there exists a diffeomorphisng : P — P, such thaty*¢' = 6%, y*Q24 = 24, where
i=12,34andA =1, 2. The procedure of constructing manifoRland the coframe

(6", 24) is explained in details ifi9,10] for a general case and [8,5] for this specific
problem. Here we omit the details of this procedure, summarizing the results on f.p. equiv-
alence problem in the following theorem.

Theorem 2.1. A third-order ODE y" = F(x,y, ', y"), satisfying Fyq # 0, considered
modulo fiber preserving transformations of variables, uniquely defines a six-dimensional
manifold ‘P, and an invariant coframe (91, 92, 93, 94, .Ql, [22) on it. In local coordinates
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(x,y, p=Y.q=1Y",a,y) this coframe is given by

ot = oca)l,

1
92 = 6 qq(wz + ya)l),

1 1 1
0% = 36, Fas <w3+ (y - 3) Fyo® + (2;/2 - K) w1> :

g4 — Ea)‘l
Ffﬂi
1 1 2 2 1 2
ot = T —Fygqv* + 5ququ + quq + 2Fyp | v + FyeKy
q9
+ 2F 94K — 2Fyqy) 0! — L dar

2 1 1 2 1 4

(6)

1/1. , (1 ,
+a <_2quqV + <3ququ + qup) Y+ FoqqK — quy) ®
1/1. 5 (1, 1 )
tog \ T2 Faaa?” T gFag t 3Faaaty + Foap | v
1 1
"’(quKq_quy"'quqK)V_§ququ_quKp_§quFqKq
1 1
+ 3quqK> ol + anq dy,
where K denotes

12 1

1
K = é(qu +quy +quP + Fqu) — 6 qg éFp

and ', i = 1, 2, 3, 4 are defined by the ODE via (4).

Exterior derivatives of the above invariant forms read

dot = 21 A0t + 6% A 62,

do? = 22 A O 4 ab® A 6% + bO* A 67 + 0% A 63,

do® = 22 A 02 — QLA 0% + (2 — 20)03 A 62 + eb* A O + 20 A 65,

do* = QL A0+ 0% A 0L + (¢ — 2)0% A 62 + abd* A 63,

d2l = (2c — 2)22 A Y — 22 A 0% + g0 A 62 + hOL A 63
+ k0 A 6% — 0% A 6%,

d22 = Q2 A2V —a? AN 0° — b2 A 4101 A 07 + mOL A 0° + not AO*
+ 762 A O3 4 562 A 6% — f03 A G4,

(7)

wherea, b, c, e, f. g, h, k,1,m, n, r, s are functions orP, which can be simply calculated
due to formulae(6). The simplest and the most symmetric case, when all the func-
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tionsa, b, c, e, f, g h,k,1,m,n,r,s vanish, corresponds to the f.p. equivalence class of
equation

In this case, the manifold® is (locally) the Lie group SO(2) and the coframe

(61, 62,63, 0%, 21, 22) is a basis of left invariant forms, which can be collected to the
s0(2 2)-valued flat Cartan connection #h= SO(2 2). Since the Levi-Civita connection

for the split signature metrics in four dimensions also takes value in 8h(&e ask under
which conditions on f.p. equivalence classes of OPBsEqgs.(7) may be interpreted as

the structure equations for the Levi—Civita connection of a certain four-dimensional split
signature metric.

3. The construction of the metrics

It is convenient to change the basis of 1-forfhse?, 63, 6%, 21, 22 onPto
L= opt 4ot 22 B3 024 268 s
=4 =2+ 20, (8)

After this change, Egs(7) yield the formulae for the exterior differentials of
1, 12,13, 1%, I, Ip. These are the formula@3) of Appendix A They can be used to
analyze the properties of the following bilinear tensor field

G = éijrir-/ =2t11% + 27344 (9)
on P. The first question we ask here is the following: under which conditions on
a,b,c,e, f, g, h, k1, m,n,r, s the first four of Eqs(23) may be identified with

dr’ + F"j ATl =0,
where the 1-formg™, i, j = 1, 2, 3, 4 satisfy

F(ij) =0, and Fij = éikl“]’f.

This happens if and only if

c=0, [=0, r=0, s=0. (20)

2

Now, we call 1-forma™, I asvertical and 1-formset, 2, 73, t# ashorizontal. To be able

to interprete

R S N s
R, =dI'i+ Ty AT
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as a curvature, we have to require that it is horizontal, i.e. contaiig nb terms. This is
equivalent to

m =0, a=0, g=0, f=-b. (12)
If these conditions are satisfied then the exterior derivativé23)fgive also
b=0, h=0. (12)

Concluding, having condition€ 0)—(12)satisfied, we have the following differentials of
the coframedt, 62, 63, 6, Iy, I):

del =y Al

dt2=—F1At2+%ntlAT4,
d3=—-I AT +( n—e>r1A1:4,
(13)
det = o A T4,
dry =t A2+ %kl’l AT

drn = %kl’l AT — 3 ATH

and the following formulae for the matrix of 1-forms

—-In 0 O 0
ri— 0 nmn o —%nrl + (e — %n)r4
T Lat— (e—3in)* 0 I 0
2 2 2
0 0 O -1y
Moreover, mtroducmg the frame of the vector fields ( X2, X3, X4, Y1, Y2) dual to the
coframer?, ..., *, I';, I> we get the following non-vanishing 2- forniﬁ
R% =—tlA2— %krl A r4,

R%:rl/\rz—i—lkrl/\r“,

Rﬁ:lkr AT +< n4+el—%n1>t1/\r %kt3/\r4,
R%:—fkt /\rz—(én4+e —%nl) TlAf4+%kT3At4,
R%:lkr AT =3 AT,

Rﬁ_ kl’ AT+ AT

Here f; denotesX;(f). It further follows thatRic;; = R{ij satisfies
Ricij = —é,'j. (14)

These preparatory steps enable us to associate with each f.p. equivalence class of ODEs
(1) satisfying conditiong10)—(12)a four-manifold M equipped with a split signature
Einstein metriaG. This is done as follows.
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e The system(13) guarantees that the distributidhspanned by the vector fieldg, Y»
is integrable. The leaf space of this foliation is four-dimensional and may be identified
with M. We also have the projection: P — M.

e The tensor fieldG is degenerateG(Y1, -) = 0, G(Y2, -) = 0, along the leaves of.
Moreover, equationél3) imply that

Ly,G=0, LyG=0.

Thus,G projects to a well-defined split signature mettion M.

e The Levi—Civita connection 1-form fag and the curvature 2-form, pull-backed vi&
to P, identify with I'f and R, respectively.

e Thus, due to equationd4), the metricG satisfies the Einstein field equations with
cosmological constamt = —1.

Below we find all functionsF' = F(x, y, p, ¢) which solve condition§10)—(12) This
will enable us to write down the explicit formulae for the Einstein metfiessociated with
the corresponding equation$ = F(x, y, y', y').

The condition$ = 0, ¢ = 0 in coordinates, v, p, ¢, «, y read

1 1 1
qu+§qu+3Kq=0a quqV—qup—ququq"'*Fz=0'

The most general funtio(x, y, p, g) defining third-order ODEs satisfying these con-
straints is
e ox(x, ¥) + poy(x, y)

p+o(x,y) ptoy) 17T &(x, y, p),

F—3
2

whereg, £ are arbitrary functions of two and three varaibles, respectively. Since the equations
are considered modulo fiber preserving transformations, we canpu@ by transformation
x = x andy = y(x, y) such thaty, = —o(x, y(x, y)). Condition/ = 0 now becomes

pgg‘_ppp - 3p2$pp + GPSP — 6t =0,

with the following general solution

£ = A(x, y)p° + C(x, y)p? + B(x, y)p.

HenceF is given by

34¢°
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It further follows that it fulfills the remaining conditions= f = g=h=m=r=s5=0
and that
L C Cy —zC — 2A, 1 +tC+2By—CX
=——F n=-———; """ e=_-n+ ————=—>—.
8a3p ’ 2 1603 p?
A straightforward application oFheorem 2.1eads to the following expressions for the
‘null coframe’ (¢, 72, <3, t%):

(16)

1 = 2ady
72 = (4a) [ Cdx + (24 — z2) dy + 2 ]
3 = (dap)~Y[—(t + 2B)dx — Cdy + 2 d]
™ = 2ap d,

where the new coordinatesaindr are

, r==+y

RSN

This brings
G = 2(rlr2 + ‘[31,'4)

on P to the form that depends only on coordinatesy( z, 7). Thus,G projects to a well-
defined split signature metric

G = —[* + 2B(x, y)]dx? + 2 dr dx + [2A(x, y) — z?]dy® + 2 dz dy

on a four-manifoldM parmetrized byXx, y, z, ).

It follows from the construction that metriG is f.p. invariant. However, it does not
yield all the f.p. information about the corresponding ODE. It is clear, since the function
C which is proportional to the f. p. Cartan’s invariahbf (13), is not appearing in the
metric G. From the point of view of the metric, functio@ represents a ‘null rotation’
of coframe ¢'). Thus it is not a geometric quantity. Therefage although f.p. invariant,
can not distinguish between various f.p. nonequivalent classes of equations such as, for
example, those witld = 0 andC # 0. To fully distinguish all non-equivalent ODEs with
(15) one needs additional structure than the mefid his structure is only fully described
by the bundler : P — M together with the coframert, 72, 3, 4, I'y, I>) of (13) on P.

An alternative description, more in the spirit of the split signature mélris presented in
Sectionb.

Now, Egs.(14)imply that the metrias is Einstein with cosmological constant= —1.

The anti-selfdual part of its Weyl tensor is always of Petrov—Penrose type D. The selfdual
Weyl tensor is of type Il, if the functions andB are generic. IfA = A(y) andB = B(x)

the selfdual Weyl tensor degenerates to a tensor of type D. Summing up we have following
theorem.
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Theorem 3.1. Third-order ODE

3 y//2
= 5 A Yl Y B )Y

defines, by virtue of Cartan’s equivalence method, a four-dimensional split signature metric
G = —[r* + 2B(x, )] dx? + 2 dt dx + [2A(x, y) — z2]dy? + 2 dz dy
which is Einstein
Ric(G) = -G
and has Weyl tensor W = WASP + WSP of Petrov type D + II, with the exception of the
case A = A(y), B = B(x), when it is of type D + D. The metric G is invariant with respect
to f.p. transformations of the variables of the ODE.
4. Uniqueness of the metrics
In this section we prove the following theorem.
Theorem 4.1. The metrics of Theorem 3.lare the unique family of metrics G, which

are defined by f.p. equivalence classes of third-order ODEs and satisfy the following three
conditions.

® The metrics are split signature, Einstein. Ric(G) = —G, and each of them is defined on
Sfour-dimensional manifold M, which is the base of the fibration &t : P — M.
_ § y//2

® The family contains a metric corresponding to equation y" = 35 v
® The tensor

G =7*G = ;j0'07 + ;40" 2" + papRt 28,

on P, when expressed by the invariant coframe (0, 24) associated with the respective
f-p. equivalence class, has the coefficients i;j, via, pag; i, j=1,...,4,A,B=1,2
constant and the same for all the classes of the ODEs for which G is defined.

To prove the theorem, it is enough to show the uniquenessinfthe simplest case of

"2
equationy” = %yy— and to repeat the calculations of Sect8fior a generic equation. The
following trivial proposition holds.

Proposition 4.2. Let G be a bilinear symmetric form of signature (+ + — — 00) on P,
such that for a vector field N

if G(N,)=0 then LyG =0. 17)
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A distribution spanned by such vector fields N is integrable and defines a four-dimensional
manifold M as a space of its integral leaves. There exists exactly one bilinear form G on
M with the property 7G = G, where 7w : P — M is the canonical projection assigning
a point of M to an integral leave of the distribution.

Ouraim now is to find all the met_ricé of Proposition 4.2vhich, when expressed by the
coframed’, 24 (or, equivalently, byt’, I'y), have constant coefficients. Let us consider the

simplest case, corresponding to equatyCYn_ 52, for which all the invariant functions

appearing in(7) and (23)vanish.P is now the L|e group SO(2), G is a form on its Lie
algebra so(22), the distribution spanned by the degenerate fidlds a two-dimensional
subalgebrg c so(2 2). FindingG is now a purely algebraic problem. In our case the basis
(t!, I'y) satisfies

del =y Al dr3 = -1y A T3,
de? = - A T2, di* =1 A t? (18)
dry = 1 A 72, drs = t# A 75,

which agrees with a decomposition sp?22 = so(1, 2) & so(], 2). A group of transforma-
tions preserving equatioli$8)is O(1, 2) x O(1, 2), thatis the intersection of the orthogonal
group O(2 4) preserving the Killing form of so(2 2) and the group GL(3)% GL(3) pre-
serving the decomposition so@) = so(1 2) @ so(1, 2). Each coframe¥(, I'4), satisfying
(18)is obtained by a linear transformation:

%l 1 =3 3

T T T
2 l=A2], #|=B| |, A BeO(l2). (19)
f]_ I fz I

We use transformationd9) to obtain the most convenient form of the basig (Nz) of
the subalgebra C so(2 2). We write down the metriG in the corresponding coframe
(71,72, 73,74, I, I») and impose cond|t|on(§L7) This conditions imply that the most
general form of the metric i& = 247172 + 207374, whereu, v are two real parameters.
In such case,N1, N2] = 0 andx(N1, N1) < 0, (N2, N2) < 0. When written in terms of
the coframe €', I'y), G involves six real parameters v, i, ¢, v, ¥, however it appears,
that only parameterg andv are essential; different choices of ¢, v, ¢ define different
degenerate distributions spannedty N, and hence spaces! are different, but metrics
G on them are isometric. Thus we can chogse= 2utlt2 4 2vt3t*. ComputingG for

F = 5%, we have, in a suitable coordinate systemy z, 1),

G = —v[? 4 2B(x, y)] dx? + 2vdr dx + u[2A(x, y) — z2] dy? + 2u dz dy.
Parameters, v can be also fixed, if we demauiio be Einstein with cosmological constant
A = —1. This is only possible if: = 1, v = 1. The tensor field; defined in this way is
unigue and has the form

G = 21172 4 21374 = 2022201 + 0%) + 20%(26° + 27).
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This formula is used in the generic case explaining our choice of the cofi@gnaed the
metric(9). This finishes the proof ofheorem 4.1

5. The Cartan connection and the distinguished class of ODEs

Here we provide an alternative description of the f.p. equivalence class of third-order
ODEs correspondingts = F(x, y, p, q) of (15). We consider a four-dimensional manifold
M parametrized byy, y, z, t). Then the geometry of a f.p. equivalence class of OQ153
is in one to one correspondence with the geometry of a class of coframes

i =dy
2 = 3[Cdr + (24 — 22) dy + 2] 20)
w8 = 3[—(t +2B)dx — Cdy + 2]

4 = dx,

on M given modulo a special SO(2) transformation
20 0 0 0

i i iJ i 0 (2“)_1 0 0

o> T =hity, Wwhere ()= (21)

0 0 (mp?to
0 0 0 2w

The Cartan equivalence method applied to the question if two cofré@@¢are trans-
formable to each other vi@1) gives the full system of invariants of this geometry. These
invariants consist of (i) a fibration : 7 — M of Section3, which now becomes a Cartan
bundle}{ — P — M with the two-dimensional structure grogpgenerated by, and (ii)

of an so(2 2)-valued Cartan connectiendescribed by the coframe( 2, t3, t%, I', )
of (13) onP. Explicitely, the connectiow is given by

—%(F1+F2+f4) 0 t —%‘r4
o — 0 %(1—'14-1—'24-1'4) —1—'2+T3—%7:4 —%‘52
/ %tz %r‘l %(Fl -1 0
-3+ i —7! 0 F(~I+ 1+

To see that this is an sq(2) connection it is enough to note tlm;w,{ + gkja)ff = 0 with
the matrixg;; given by

0100
1000
0001
0010

8ij =
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Now, Eqs(13) are interpreted as the requirement that the curvature
L=dot+owArw

of this connectionw has a very simple form

3k 0 0 0
1 1 1

Q: 10 ik i(—k—l—n—Ze) —le’l -Cl/\‘[4’
an 0 0 0
fk—n+2) O 0 0

wheren, e andk are given by(16). The connectiomw and its curvature? yields all the f.p.
information of the equation corresponding(i). In particular, all the equations with=
n = e = 0 are f.p. equivalent, all having the vanishing curvature of their Cartan connection
w.

It is interesting to search for a split signature 4-me#fitor which the connectiow is
the Levi—Civita connection. The general form of such metric is

H=g,T'T/,

where (1, 72, T3, T%) are four linearly independent 1-forms @hwhich staisfy
dT’ + o’ AT/ = 0. (22)

Thus, for suchH to exist, the 1-forms®, 72, T3, T%) must also satisfy the integrability
conditions of(22),

.QijATf=0,

which are just the Bianchi identities far to be the Levi—Civita connection of metrig.

These identities provide severe algebraic constraints on the possible sol@tiprigsing

them, under the assumption th@gx, y) # 0 in the considered region @, we found all

(THs satisfying(22). Thus, with every tripleC # 0, A, B corresponding to an ODE given

by F of (15), we were able to find a split signature metkidor which connectionw is the
Levi—Civita connection. Surprisingly, give, B andC # 0 the general solution forTf)
involves fourfree real functions. Two of these functions depend on six variables and the
other two depend on two variables. Thus, each f.p. equivalence class of ODEs representd by
F of (15) defines a large family of split signature metrigsfor which w is the Levi—Civita
connectiont Writing down the explicit formulae for these metrics is easy, but we do not
present them here, due to their ugliness and due to the fact that, regardless of the choice of
the four free functions, they never satisfy the Einstein equations. The proof of this last fact
is based on lengthy calculations using the explicit forms of the general solutiori& for (

1 The four-manifold on which each of these metrics resides is the leaf space of the two-dimensional integrable
distribution onP which anihilates formsx®, 72, T3, T%).
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Appendix A

In this appendix we give the formulae for the differentials of the transformed Cartan
invariant coframe®, 72, z3, t*, I't, I'>) onP. These are:
1 1 1 1 1
dil=mAadt+ Zemadt— fCF2/\‘L’4+ffT4/\'L’1— Zat* A%+ Zatt A T8,
2 2 2 2 2
(23a)

1 1 1 1 1
dT2=4lF]_/\T1+(4r—1> F]_/\T2—4I’Fl/\'[3—<4l+2$) Fl/\T4

1 . 1 , 1 3 1 1 4
— =IO AT —=rI2 AT+ =-rIoAT°+ | =]+ =s | [>AT

4 4 4 4 2
1 1 1 1
—I—Zmrz/\rl— th3/\rl— Enr‘l/\tl—i-éazﬁ/\rz
1 1 1 1
+<4m—2f+b)t4/\r2+<2f—4m>t4/\r3, (23b)

1 1 1
dr3=4lF1/\rl+(c+4r> FlArz— <c+4r) 1“1/\13

1l+1 F/\4+11F/\1 +1 I A T2
g5 | AT AT ctgr)ene

+ —|—1 11/\3+ 1l+1 I/\“—i—1 N
—r— T -+ T “MT° AT
c 4 2 4 2s 2 4m

1 1 1
—4mr3/\rl+(e—2n) 14/\t1+§ar3/\12

1 1 1 1
+<4m—b—2f)‘lf4/\‘52+(2b+2f—4m>T4A‘L'3, (23c)
1 1 1 1 1
dr4=+§c1“1/\r4+ <1—2c> Fg/\t4+§fr4/\rl—Ear4/\r2+§ar4/\r3,

(23d)



M. Godliriski, P. Nurowski / Journal of Geometry and Physics 56 (2006) 344-357 357
d1—11/\1+ 1fl 1/\411/\1+1 1f1'/\4
=- T =f—-= T — = T -g— = T
1 48 1 2 48 1 48 2 45’ 2 2

1 1 1
+ (4h+c—l) T2A11+—Zh13Atl—§kT4/\‘Cl

1 1
+ (4h + c) AT — Zhr4 AT, (23e)

1 1 1 1 1
ng:4gF1/\tl—2aF1/\t2+2aF1/\t3+<b+2f—4g) FlA‘L'A'

lFA1+1FA21FA3—|—l blfF/\4
4gzr Zazr 2a2‘L’ 28 > 2AT

1 1 1 1
+ (4h~|—c> 12/\11—4h13/\rl—2kr4/\rl+<4h+c) 4 A 72

+ (1 — ih) A (23f)
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