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Abstract

We construct a family of split signature Einstein metrics in four dimensions, corresponding to par-
ticular classes of third-order ODEs considered modulo fiber preserving transformations of variables.
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1. Introduction

Our starting point is a third-order ordinary differential equation (ODE)

y′′′ = F (x, y, y′, y′′), (1)

for a real functiony = y(x). HereF = F (x, y, p, q) is a sufficiently smooth real function
of four real variables (x, y, p = y′, q = y′′).

Given another third-order ODE

ȳ′′′ = F̄ (x̄, ȳ, ȳ′, ȳ′′) (2)
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it is often convenient to know whether there exists a suitable transformation of variables
(x, y, p, q) → (x̄, ȳ, p̄, q̄) which brings(2) to (1). Several types of such transformations are
of particular importance. Here we consider fiber preserving (f.p.) transformations, which
are of the form

x̄ = x̄(x), ȳ = ȳ(x, y). (3)

We say that two third-order ODEs,(1) and (2), are (locally) f.p. equivalent iff there ex-
ists a (local) f.p. transformation(3), which brings(2) to (1). The task of finding nec-
cessary and sufficient conditions for ODEs(1) and (2)to be (locally) f.p. equivalent,
is called a f.p. equivalence problem for third-order ODEs. In the cases of (more gen-
eral) point transformations and contact transformations, this problem was studied and
solved by Cartan[1] and Chern[2] in the years 1939–1941. The interest in these stud-
ies has been recently revived due to the fact that important equivalence classes of third-
order ODEs naturally define three-dimensional conformal Lorentzian structures including
Einstein–Weyl structures. This makes these equivalence problems aplicable not only to
differential geometry but also to the theory of integrable systems and general relativity
[3,8,11].

In this paper we show how to construct four-dimensional split signature Einstein met-
rics, starting from particular ODEs of third-order. We formulate the problem of f.p. equiv-
alence in terms of differential forms. Invoking Cartan’s equivalence method, we con-
struct a six-dimensional manifold with a distinguished coframe on it, which encodes
all information about original equivalence problem. For specific types of the ODEs, the
class of Einstein metrics can be explicitly constructed from this coframe. This result is a
byproduct of the full solution of the f.p. equivalence problem, that will be described in
[5].

We acknowledge that all our calculations were checked by the independent use of the
two symbolic calculations programs: Maple and Mathematica.

2. Third-order ODE and Cartan’s method

Following Cartan and Chern, we rewrite(1), using 1-forms

ω1 = dy − pdx,

ω2 = dp− q dx,

ω3 = dq− F (x, y, p, q) dx,

ω4 = dx.

(4)

These are defined on the second jet spaceJ2 locally parametrized by (x, y, p, q). Each
solutiony = f (x) of (1) is fully described by the two conditions: formsω1, ω2, ω3 vanish
on a curve (t, f (t), f ′(t), f ′′(t)) and, as this defines a solution up to transformations ofx,
ω4 = dt on this curve. Suppose now, that Eq.(1)undergoes fiber preserving transformations
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(3). Then the forms(4) transform by

ω1 → ω̄1 = αω1,

ω2 → ω̄2 = β(ω2 + γω1),

ω3 → ω̄3 = ε(ω3 + ηω2 + κω1),

ω4 → ω̄4 = λω4,

(5)

where functionsα, β, γ, ε, η,κ, λ are defined onJ 2, satisfyαβελ �= 0 and are determined
by a particular choice of transformation(3). A fiber preserving equivalence class of ODEs is
described by forms(4)defined up to transformations(5). Eqs.(1) and (2)are f.p. equivalent,
iff their corresponding forms (ωi) and (ω̄j) are related as above.

We now apply Cartan’s equivalence method[9,10]. Its key idea is to enlarge the spaceJ 2

to a new manifoldP̃, on which functionsα, β, γ, ε, η,κ, λ are additional coordinates. The
coframe (ωi) defined up to transformations(5), is now replaced by a set of four well-defined
1-forms

θ1 = αω1,

θ2 = β(ω2 + γω1),

θ3 = ε(ω3 + ηω2 + κω1),

θ4 = λω4

on P̃. If, in addition, the following f.p. invariant condition[4,6]

Fqq �= 0

is satisfied then, there is a geometrically distinguished way of choosing five parame-
ters β, ε, η,κ, λ to be functions of (x, y, p, q, α, γ). Then, on a six-dimensional man-
ifold P parametrized by (x, y, p, q, α, γ) Cartan’s method gives a way of supplement-
ing the well-defined four 1-forms (θi) with two other 1-formsΩ1, Ω2 so that the set
(θ1, θ2, θ3, θ4,Ω1,Ω2) constitutes a rigid coframe onP. According to the theory of G-
structures[7,10], all information on a f.p. equivalence class of Eq.(1) satisfyingFqq �= 0
is encoded in the coframe (θ1, θ2, θ3, θ4,Ω1,Ω2). Two Eqs.(1) and (2)are f.p. equivalent,
iff there exists a diffeomorphismψ : P→ P̄, such thatψ∗θ̄i = θi, ψ∗Ω̄A = ΩA, where
i = 1,2,3,4 andA = 1,2. The procedure of constructing manifoldP and the coframe
(θi,ΩA) is explained in details in[9,10] for a general case and in[4,5] for this specific
problem. Here we omit the details of this procedure, summarizing the results on f.p. equiv-
alence problem in the following theorem.

Theorem 2.1. A third-order ODE y′′′ = F (x, y, y′, y′′), satisfying Fqq �= 0, considered
modulo fiber preserving transformations of variables, uniquely defines a six-dimensional
manifold P, and an invariant coframe (θ1, θ2, θ3, θ4,Ω1,Ω2) on it. In local coordinates
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(x, y, p = y′, q = y′′, α, γ) this coframe is given by

θ1 = αω1,

θ2 = 1

6
Fqq(ω

2 + γω1),

θ3 = 1

36α
Fqq

(
ω3 +

(
γ − 1

3

)
Fqω

2 +
(

1

2
γ2 +K

)
ω1

)
,

θ4 = 6α

Fqq
ω4,

Ω1 = 1

Fqq

(
−Fqqqγ2 +

(
2

3
FqqqFq + 1

3
F2
qq + 2Fqqp

)
γ + FqqKq

+ 2FqqqK − 2Fqqy
)
ω1 − γ

α
dα

Ω2 = − 1

6α
Fqq

(
1

2
γ2 + 1

3
Fqγ +K

)
ω4

+ 1

6α

(
−1

2
Fqqqγ

2 +
(

1

3
FqqqFq + Fqqp

)
γ + FqqqK − Fqqy

)
ω2

+ 1

6α

(
−1

2
Fqqqγ

3 +
(

1

6
F2
qq + 1

3
FqqqFq + Fqqp

)
γ2

+ (FqqKq − Fqqy + FqqqK)γ − 1

3
FqqFqy − FqqKp − 1

3
FqqFqKq

+ 1

3
F2
qqK

)
ω1 + 1

6α
Fqq dγ,

(6)

where K denotes

K = 1

6
(Fqx + pFqy + qFqp + FFqq) − 1

9
F2
q − 1

2
Fp

and ωi, i = 1,2,3,4 are defined by the ODE via (4).

Exterior derivatives of the above invariant forms read

dθ1 = Ω1 ∧ θ1 + θ4 ∧ θ2,

dθ2 = Ω2 ∧ θ1 + aθ3 ∧ θ2 + bθ4 ∧ θ2 + θ4 ∧ θ3,

dθ3 = Ω2 ∧ θ2 −Ω1 ∧ θ3 + (2 − 2c)θ3 ∧ θ2 + eθ4 ∧ θ1 + 2bθ4 ∧ θ3,

dθ4 = Ω1 ∧ θ4 + fθ4 ∧ θ1 + (c − 2)θ4 ∧ θ2 + aθ4 ∧ θ3,

dΩ1 = (2c − 2)Ω2 ∧ θ1 −Ω2 ∧ θ4 + gθ1 ∧ θ2 + hθ1 ∧ θ3

+ kθ1 ∧ θ4 − fθ2 ∧ θ4,

dΩ2 = Ω2 ∧Ω1 − aΩ2 ∧ θ3 − bΩ2 ∧ θ4 + lθ1 ∧ θ2 +mθ1 ∧ θ3 + nθ1 ∧ θ4

+ rθ2 ∧ θ3 + sθ2 ∧ θ4 − fθ3 ∧ θ4,

(7)

wherea, b, c, e, f, g, h, k, l,m, n, r, s are functions onP, which can be simply calculated
due to formulae(6). The simplest and the most symmetric case, when all the func-



348 M. Godliński, P. Nurowski / Journal of Geometry and Physics 56 (2006) 344–357

tions a, b, c, e, f, g, h, k, l,m, n, r, s vanish, corresponds to the f.p. equivalence class of
equation

y′′′ = 3

2

y′′2

y′ .

In this case, the manifoldP is (locally) the Lie group SO(2,2) and the coframe
(θ1, θ2, θ3, θ4,Ω1,Ω2) is a basis of left invariant forms, which can be collected to the
so(2,2)-valued flat Cartan connection onP = SO(2,2). Since the Levi–Civita connection
for the split signature metrics in four dimensions also takes value in so(2,2), we ask under
which conditions on f.p. equivalence classes of ODEs(1), Eqs.(7) may be interpreted as
the structure equations for the Levi–Civita connection of a certain four-dimensional split
signature metricG.

3. The construction of the metrics

It is convenient to change the basis of 1-formsθ1, θ2, θ3, θ4,Ω1,Ω2 onP to

τ1 = 2θ1 + θ4, τ2 = Ω2, τ3 = Ω2 + 2θ3, τ4 = θ4,

Γ1 = Ω1, Γ2 = Ω1 + 2θ2. (8)

After this change, Eqs.(7) yield the formulae for the exterior differentials of
τ1, τ2, τ3, τ4, Γ1, Γ2. These are the formulae(23) of Appendix A. They can be used to
analyze the properties of the following bilinear tensor field

G̃ = G̃ijτ
iτj = 2τ1τ2 + 2τ3τ4 (9)

on P. The first question we ask here is the following: under which conditions on
a, b, c, e, f, g, h, k, l,m, n, r, s the first four of Eqs.(23)may be identified with

dτi + Γ ij ∧ τj = 0,

where the 1-formsΓ ij , i, j = 1,2,3,4 satisfy

Γ(ij) = 0, and Γij = G̃ikΓ
k
j .

This happens if and only if

c = 0, l = 0, r = 0, s = 0. (10)

Now, we call 1-formsΓ1, Γ2 asvertical and 1-formsτ1, τ2, τ3, τ4 ashorizontal. To be able
to interprete

Rij = dΓ ij + Γ ik ∧ Γ kj
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as a curvature, we have to require that it is horizontal, i.e. contains noΓ1, Γ2 terms. This is
equivalent to

m = 0, a = 0, g = 0, f = −b. (11)

If these conditions are satisfied then the exterior derivatives of(23)give also

b = 0, h = 0. (12)

Concluding, having conditions(10)–(12)satisfied, we have the following differentials of
the coframe (θ1, θ2, θ3, θ4, Γ1, Γ2):

dτ1 = Γ1 ∧ τ1,

dτ2 = −Γ1 ∧ τ2 + 1
2nτ

1 ∧ τ4,

dτ3 = −Γ2 ∧ τ3 +
(

1
2n− e

)
τ1 ∧ τ4,

dτ4 = Γ2 ∧ τ4,

dΓ1 = τ1 ∧ τ2 + 1
2kτ

1 ∧ τ4,

dΓ2 = 1
2kτ

1 ∧ τ4 − τ3 ∧ τ4,

(13)

and the following formulae for the matrix of 1-forms

Γ ij =




−Γ1 0 0 0

0 Γ1 0 −1
2nτ

1 + (e− 1
2n)τ4

1
2nτ

1 − (e− 1
2n)τ4 0 Γ2 0

0 0 0 −Γ2


 .

Moreover, introducing the frame of the vector fields (X1, X2, X3, X4, Y1, Y2) dual to the
coframeτ1, . . . , τ4, Γ1, Γ2 we get the following non-vanishing 2-formsRij:

R1
1 = −τ1 ∧ τ2 − 1

2kτ
1 ∧ τ4,

R2
2 = τ1 ∧ τ2 + 1

2kτ
1 ∧ τ4,

R2
4 = 1

2kτ
1 ∧ τ2 +

(
1
2n4 + e1 − 1

2n1

)
τ1 ∧ τ4 − 1

2kτ
3 ∧ τ4,

R3
1 = −1

2kτ
1 ∧ τ2 −

(
1
2n4 + e1 − 1

2n1

)
τ1 ∧ τ4 + 1

2kτ
3 ∧ τ4,

R3
3 = 1

2kτ
1 ∧ τ4 − τ3 ∧ τ4,

R4
4 = −1

2kτ
1 ∧ τ4 + τ3 ∧ τ4.

Herefi denotesXi(f ). It further follows thatRicij = Rkikj satisfies

Ricij = −G̃ij. (14)

These preparatory steps enable us to associate with each f.p. equivalence class of ODEs
(1) satisfying conditions(10)–(12)a four-manifoldM equipped with a split signature
Einstein metricG. This is done as follows.
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• The system(13) guarantees that the distributionV spanned by the vector fieldsY1, Y2
is integrable. The leaf space of this foliation is four-dimensional and may be identified
withM. We also have the projectionπ : P→M.

• The tensor fieldG̃ is degenerate,̃G(Y1, ·) = 0, G̃(Y2, ·) = 0, along the leaves ofV.
Moreover, equations(13) imply that

LY1G̃ = 0, LY2G̃ = 0.

Thus,G̃ projects to a well-defined split signature metricG onM.
• The Levi–Civita connection 1-form forG and the curvature 2-form, pull-backed viaπ∗

toP, identify withΓ ij andRij, respectively.
• Thus, due to equations(14), the metricG satisfies the Einstein field equations with

cosmological constantΛ = −1.

Below we find all functionsF = F (x, y, p, q) which solve conditions(10)–(12). This
will enable us to write down the explicit formulae for the Einstein metricsG associated with
the corresponding equationsy′′′ = F (x, y, y′, y′′).

The conditionsb = 0, c = 0 in coordinatesx, y, p, q, α, γ read

Fqp + 1

3
Fqq + 3Kq = 0, Fqqqγ − Fqqp − 1

3
FqqqFq + 1

6
F2
qq = 0.

The most general funtionF (x, y, p, q) defining third-order ODEs satisfying these con-
straints is

F = 3

2

q2

p+ σ(x, y)
+ 3

σx(x, y) + pσy(x, y)

p+ σ(x, y)
q+ ξ(x, y, p),

whereσ, ξ are arbitrary functions of two and three varaibles, respectively. Since the equations
are considered modulo fiber preserving transformations, we can putσ = 0 by transformation
x̄ = x andȳ = ȳ(x, y) such that ¯yx = −σ(x, ȳ(x, y)). Conditionl = 0 now becomes

p3ξppp − 3p2ξpp + 6pξp − 6ξ = 0,

with the following general solution

ξ = A(x, y)p3 + C(x, y)p2 + B(x, y)p.

HenceF is given by

F = 3

2

q2

p
+ A(x, y)p3 + C(x, y)p2 + B(x, y)p. (15)
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It further follows that it fulfills the remaining conditionsa = f = g = h = m = r = s = 0
and that

k = − C

4α2p
, n = Cy − zC − 2Ax

8α3p
, e = 1

2
n+ tC + 2By − Cx

16α3p2 . (16)

A straightforward application ofTheorem 2.1leads to the following expressions for the
‘null coframe’ (τ1, τ2, τ3, τ4):

τ1 = 2αdy

τ2 = (4α)−1[C dx+ (2A− z2) dy + 2 dz]

τ3 = (4αp)−1[−(t + 2B) dx− C dy + 2 dt]

τ4 = 2αpdx,

where the new coordinatesz andt are

z = γ

p
, t = q

p
+ γ.

This brings

G̃ = 2(τ1τ2 + τ3τ4)

onP to the form that depends only on coordinates (x, y, z, t). Thus,G̃ projects to a well-
defined split signature metric

G = −[t2 + 2B(x, y)] dx2 + 2 dt dx+ [2A(x, y) − z2] dy2 + 2 dzdy

on a four-manifoldM parmetrized by (x, y, z, t).
It follows from the construction that metricG is f.p. invariant. However, it does not

yield all the f.p. information about the corresponding ODE. It is clear, since the function
C which is proportional to the f. p. Cartan’s invariantk of (13), is not appearing in the
metric G. From the point of view of the metric, functionC represents a ‘null rotation’
of coframe (τi). Thus it is not a geometric quantity. ThereforeG, although f.p. invariant,
can not distinguish between various f.p. nonequivalent classes of equations such as, for
example, those withC ≡ 0 andC �= 0. To fully distinguish all non-equivalent ODEs with
(15)one needs additional structure than the metricG. This structure is only fully described
by the bundleπ : P→M together with the coframe (τ1, τ2, τ3, τ4, Γ1, Γ2) of (13) onP.
An alternative description, more in the spirit of the split signature metricG, is presented in
Section5.

Now, Eqs.(14) imply that the metricG is Einstein with cosmological constantΛ = −1.
The anti-selfdual part of its Weyl tensor is always of Petrov–Penrose type D. The selfdual
Weyl tensor is of type II, if the functionsA andB are generic. IfA = A(y) andB = B(x)
the selfdual Weyl tensor degenerates to a tensor of type D. Summing up we have following
theorem.
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Theorem 3.1. Third-order ODE

y′′′ = 3

2

y′′2

y′ + A(x, y)y′3 + C(x, y)y′2 + B(x, y)y′

defines, by virtue of Cartan’s equivalence method, a four-dimensional split signature metric

G = −[t2 + 2B(x, y)] dx2 + 2 dt dx+ [2A(x, y) − z2] dy2 + 2 dzdy

which is Einstein

Ric(G) = −G

and has Weyl tensor W = WASD +WSD of Petrov type D + II, with the exception of the
case A = A(y), B = B(x), when it is of type D + D. The metric G is invariant with respect
to f.p. transformations of the variables of the ODE.

4. Uniqueness of the metrics

In this section we prove the following theorem.

Theorem 4.1. The metrics of Theorem 3.1are the unique family of metrics G, which
are defined by f.p. equivalence classes of third-order ODEs and satisfy the following three
conditions.

• The metrics are split signature, Einstein: Ric(G) = −G, and each of them is defined on
four-dimensional manifoldM, which is the base of the fibration π : P→M.

• The family contains a metric corresponding to equation y′′′ = 3
2
y′′2
y′ .

• The tensor

G̃ = π∗G = µijθ
iθj + νiAθ

iΩA + ρABΩ
AΩB,

on P, when expressed by the invariant coframe (θi,ΩA) associated with the respective
f.p. equivalence class, has the coefficients µij, νiA, ρAB; i, j = 1, . . . ,4; A,B = 1,2
constant and the same for all the classes of the ODEs for which G is defined.

To prove the theorem, it is enough to show the uniqueness ofG in the simplest case of

equationy′′′ = 3
2
y′′2
y′ , and to repeat the calculations of Section3 for a generic equation. The

following trivial proposition holds.

Proposition 4.2. Let G̃ be a bilinear symmetric form of signature (+ + − − 00) on P,
such that for a vector field N

if G̃(N, ·) = 0 then LNG̃ = 0. (17)
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A distribution spanned by such vector fields N is integrable and defines a four-dimensional
manifoldM as a space of its integral leaves. There exists exactly one bilinear form G on
M with the property π∗G = G̃, where π : P→M is the canonical projection assigning
a point ofM to an integral leave of the distribution.

Our aim now is to find all the metrics̃G of Proposition 4.2which, when expressed by the
coframeθi,ΩA (or, equivalently, byτi, ΓA), have constant coefficients. Let us consider the

simplest case, corresponding to equationy′′′ = 3
2
y′′2
y′ , for which all the invariant functions

appearing in(7) and (23)vanish.P is now the Lie group SO(2,2), G̃ is a form on its Lie
algebra so(2,2), the distribution spanned by the degenerate fieldsN is a two-dimensional
subalgebrah ⊂ so(2,2). FindingG̃ is now a purely algebraic problem. In our case the basis
(τi, ΓA) satisfies

dτ1 = Γ1 ∧ τ1, dτ3 = −Γ2 ∧ τ3,

dτ2 = −Γ1 ∧ τ2, dτ4 = Γ2 ∧ τ4,

dΓ1 = τ1 ∧ τ2, dΓ2 = τ4 ∧ τ3,

(18)

which agrees with a decomposition so(2,2) = so(1,2) ⊕ so(1,2). A group of transforma-
tions preserving equations(18)is O(1,2) × O(1,2), that is the intersection of the orthogonal
group O(2,4) preserving the Killing formκ of so(2,2) and the group GL(3)× GL(3) pre-
serving the decomposition so(2,2) = so(1,2) ⊕ so(1,2). Each coframe (τ̃i, Γ̃A), satisfying
(18) is obtained by a linear transformation:


τ̃1

τ̃2

Γ̃1


 = A



τ1

τ2

Γ1


 ,



τ̃3

τ̃4

Γ̃2


 = B



τ3

τ4

Γ2


 , A, B ∈ O(1,2). (19)

We use transformations(19) to obtain the most convenient form of the basis (N1, N2) of
the subalgebrah ⊂ so(2,2). We write down the metric̃G in the corresponding coframe
(τ̃1, τ̃2, τ̃3, τ̃4, Γ̃1, Γ̃2) and impose conditions(17). This conditions imply that the most
general form of the metric is̃G = 2uτ̃1τ̃2 + 2vτ̃3τ̃4, whereu, v are two real parameters.
In such case, [N1, N2] = 0 andκ(N1, N1) < 0, κ(N2, N2) < 0. When written in terms of
the coframe (τi, ΓA), G̃ involves six real parametersu, v, µ, φ, ν, ψ, however it appears,
that only parametersu andv are essential; different choices ofµ, φ, ν, ψ define different
degenerate distributions spanned byN1, N2 and hence spacesM are different, but metrics
G on them are isometric. Thus we can chooseG̃ = 2uτ1τ2 + 2vτ3τ4. ComputingG̃ for

F = 3
2
q2

p
, we have, in a suitable coordinate system (x, y, z, t),

G = −v[t2 + 2B(x, y)] dx2 + 2vdt dx+ u[2A(x, y) − z2] dy2 + 2udzdy.

Parametersu, v can be also fixed, if we demandG to be Einstein with cosmological constant
Λ = −1. This is only possible ifu = 1, v = 1. The tensor field̃G defined in this way is
unique and has the form

G̃ = 2τ1τ2 + 2τ3τ4 = 2Ω2(2θ1 + θ4) + 2θ4(2θ3 +Ω2).
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This formula is used in the generic case explaining our choice of the coframe(8) and the
metric(9). This finishes the proof ofTheorem 4.1.

5. The Cartan connection and the distinguished class of ODEs

Here we provide an alternative description of the f.p. equivalence class of third-order
ODEs corresponding toF = F (x, y, p, q) of (15). We consider a four-dimensional manifold
M parametrized by (x, y, z, t). Then the geometry of a f.p. equivalence class of ODEs(15)
is in one to one correspondence with the geometry of a class of coframes

τ1
0 = dy

τ2
0 = 1

2[C dx+ (2A− z2) dy + 2 dz]

τ3
0 = 1

2[−(t + 2B) dx− C dy + 2 dt]

τ4
0 = dx,

(20)

onM given modulo a special SO(2,2) transformation

τi0 
→ τi = hijτ
j
0, where (hij) =




2α 0 0 0

0 (2α)−1 0 0

0 0 (2αp)−1 0

0 0 0 2αp


 . (21)

The Cartan equivalence method applied to the question if two coframes(20) are trans-
formable to each other via(21) gives the full system of invariants of this geometry. These
invariants consist of (i) a fibrationπ : P→M of Section3, which now becomes a Cartan
bundleH→ P→Mwith the two-dimensional structure groupH generated byhij, and (ii)

of an so(2,2)-valued Cartan connectionω described by the coframe (τ1, τ2, τ3, τ4, Γ1, Γ2)
of (13)onP. Explicitely, the connectionω is given by

ωij =




−1
2(Γ1 + Γ2 + τ4) 0 τ1 −1

2τ
4

0 1
2(Γ1 + Γ2 + τ4) −Γ2 + τ3 − 1

2τ
4 −1

2τ
2

1
2τ

2 1
2τ

4 1
2(Γ1 − Γ2 − τ4) 0

Γ2 − τ3 + 1
2τ

4 −τ1 0 1
2(−Γ1 + Γ2 + τ4)


.

To see that this is an so(2,2) connection it is enough to note thatgijω
j
k + gkjω

k
i = 0 with

the matrixgij given by

gij =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 .



M. Godliński, P. Nurowski / Journal of Geometry and Physics 56 (2006) 344–357 355

Now, Eqs(13)are interpreted as the requirement that the curvature

Ω = dω + ω ∧ ω

of this connectionω has a very simple form

Ω =




−1
2k 0 0 0

0 1
2k

1
2(−k + n− 2e) −1

4n

1
4n 0 0 0

1
2(k − n+ 2e) 0 0 0


 τ1 ∧ τ4,

wheren, e andk are given by(16). The connectionω and its curvatureΩ yields all the f.p.
information of the equation corresponding to(15). In particular, all the equations withk =
n = e = 0 are f.p. equivalent, all having the vanishing curvature of their Cartan connection
ω.

It is interesting to search for a split signature 4-metricH for which the connectionω is
the Levi–Civita connection. The general form of such metric is

H = gijT
iT j,

where (T 1, T 2, T 3, T 4) are four linearly independent 1-forms onP which staisfy

dT i + ωij ∧ T j = 0. (22)

Thus, for suchH to exist, the 1-forms (T 1, T 2, T 3, T 4) must also satisfy the integrability
conditions of(22),

Ωij ∧ T j = 0,

which are just the Bianchi identities forω to be the Levi–Civita connection of metricH.
These identities provide severe algebraic constraints on the possible solutions (T i). Using
them, under the assumption thatC(x, y) �= 0 in the considered region ofP, we found all
(T i)s satisfying(22). Thus, with every tripleC �= 0, A, B corresponding to an ODE given
by F of (15), we were able to find a split signature metricH for which connectionω is the
Levi–Civita connection. Surprisingly, givenA,B andC �= 0 the general solution for (T i)
involves fourfree real functions. Two of these functions depend on six variables and the
other two depend on two variables. Thus, each f.p. equivalence class of ODEs representd by
F of (15)defines a large family of split signature metricsH for whichω is the Levi–Civita
connection.1 Writing down the explicit formulae for these metrics is easy, but we do not
present them here, due to their ugliness and due to the fact that, regardless of the choice of
the four free functions, they never satisfy the Einstein equations. The proof of this last fact
is based on lengthy calculations using the explicit forms of the general solutions for (T i).

1 The four-manifold on which each of these metrics resides is the leaf space of the two-dimensional integrable
distribution onP which anihilates forms (T 1, T 2, T 3, T 4).
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Appendix A

In this appendix we give the formulae for the differentials of the transformed Cartan
invariant coframe (τ1, τ2, τ3, τ4, Γ1, Γ2) onP. These are:

dτ1 = Γ1 ∧ τ1 + 1

2
cΓ1 ∧ τ4 − 1

2
cΓ2 ∧ τ4 + 1

2
fτ4 ∧ τ1 − 1

2
aτ4 ∧ τ2 + 1

2
aτ4 ∧ τ3,

(23a)

dτ2 = 1

4
lΓ1 ∧ τ1 +

(
1

4
r − 1

)
Γ1 ∧ τ2 − 1

4
rΓ1 ∧ τ3 −

(
1

4
l+ 1

2
s

)
Γ1 ∧ τ4

− 1

4
lΓ2 ∧ τ1 − 1

4
rΓ2 ∧ τ2 + 1

4
rΓ2 ∧ τ3 +

(
1

4
l+ 1

2
s

)
Γ2 ∧ τ4

+ 1

4
mτ2 ∧ τ1 − 1

4
mτ3 ∧ τ1 − 1

2
nτ4 ∧ τ1 + 1

2
aτ3 ∧ τ2

+
(

1

4
m− 1

2
f + b

)
τ4 ∧ τ2 +

(
1

2
f − 1

4
m

)
τ4 ∧ τ3, (23b)

dτ3 = 1

4
lΓ1 ∧ τ1 +

(
c + 1

4
r

)
Γ1 ∧ τ2 −

(
c + 1

4
r

)
Γ1 ∧ τ3

−
(

1

4
l+ 1

2
s

)
Γ1 ∧ τ4 + 1

4
lΓ2 ∧ τ1 −

(
c + 1

4
r

)
Γ2 ∧ τ2

+
(
c + 1

4
r − 1

)
Γ2 ∧ τ3 +

(
1

4
l+ 1

2
s

)
Γ2 ∧ τ4 + 1

4
mτ2 ∧ τ1

− 1

4
mτ3 ∧ τ1 +

(
e− 1

2
n

)
τ4 ∧ τ1 + 1

2
aτ3 ∧ τ2

+
(

1

4
m− b− 1

2
f

)
τ4 ∧ τ2 +

(
2b+ 1

2
f − 1

4
m

)
τ4 ∧ τ3, (23c)

dτ4 = +1

2
cΓ1 ∧ τ4 +

(
1 − 1

2
c

)
Γ2 ∧ τ4 + 1

2
fτ4 ∧ τ1 − 1

2
aτ4 ∧ τ2 + 1

2
aτ4 ∧ τ3,

(23d)
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dΓ1 = 1

4
gΓ1 ∧ τ1 +

(
1

2
f − 1

4
g

)
Γ1 ∧ τ4 − 1

4
gΓ2 ∧ τ1 +

(
1

4
g− 1

2
f

)
Γ2 ∧ τ4

+
(

1

4
h+ c − 1

)
τ2 ∧ τ1 + −1

4
hτ3 ∧ τ1 − 1

2
kτ4 ∧ τ1

+
(

1

4
h+ c

)
τ4 ∧ τ2 − 1

4
hτ4 ∧ τ3, (23e)

dΓ2 = 1

4
gΓ1 ∧ τ1 − 1

2
aΓ1 ∧ τ2 + 1

2
aΓ1 ∧ τ3 +

(
b+ 1

2
f − 1

4
g

)
Γ1 ∧ τ4

− 1

4
gΓ2 ∧ τ1 + 1

2
aΓ2 ∧ τ2 − 1

2
aΓ2 ∧ τ3 +

(
1

4
g− b− 1

2
f

)
Γ2 ∧ τ4

+
(

1

4
h+ c

)
τ2 ∧ τ1 − 1

4
hτ3 ∧ τ1 − 1

2
kτ4 ∧ τ1 +

(
1

4
h+ c

)
τ4 ∧ τ2

+
(

1 − 1

4
h

)
τ4 ∧ τ3. (23f)
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